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A B S T R A C T

Although liver cancer is the second most common cause of death from cancer worldwide, because of the limited
accuracy and interpretability of extracted classification rules, the diagnosis of liver disease remains difficult. In
addition, hepatitis, which is inflammation of the liver, can progress to fibrosis, cirrhosis, or even liver cancer.
Numerous methods for diagnosing liver disease have been applied, but most current diagnostic methods are
black box models that cannot adequately reveal information hidden in the data. In the medical setting, extracted
rules must be not only highly accurate, but also highly interpretable. The Recursive-Rule eXtraction (Re-RX)
algorithm is a white box model that generates highly accurate and interpretable classification rules on the basis
of both discrete and continuous attributes; however, it tends to generate more rules than other rule extraction
algorithms. The objectives of this study were to use a new rule extraction algorithm, Continuous Re-RX
combined with sampling selection techniques (Sampling-Continuous Re-RX), to achieve highly accurate and
interpretable diagnostic rules for the BUPA and Hepatitis datasets and to quantify the associations between the
presence and severity of ascites and serum biomarkers with the risk of developing hepatitis in consideration of
Child-Pugh scores. The performance of Sampling-Continuous Re-RX was compared with existing techniques,
and as a result, it was found to extract more accurate, concise, and interpretable rules for the BUPA and
Hepatitis datasets compared with previous extraction algorithms. In addition, the rules extracted using the
proposed method were close to the trade-off curve, which indicated that they were more accurate and
interpretable, and therefore more suitable in the medical setting.

1. Introduction

Liver cancer is the second most common cause of death from cancer
worldwide, accounting for 6% of global cancer incidence and 9% of
mortality. In 2012, 746,000 deaths were directly attributable to liver
cancer. It is the fifth most common type of cancer among men (554,000
new cases, 8% of all cases) and the ninth most common among women
(228,000 cases, 3% of all cases) [1].

Although substantial progress has been made regarding the knowl-
edge and management of liver disease over the past several decades,
approximately 29 million patients in the EU are suspected to have a
chronic liver condition. Unfortunately, the evaluation of liver disease in
the EU is limited due to difficulties in accessing data from individual
countries [2].

In order to grasp a clear understanding of the actual burden of liver
disease, the prevalence of cirrhosis and primary liver cancer, which
represent the end stage of liver pathology and are therefore indicative

of the associated mortality, need to be accurately assessed; however,
such details have rarely been reported. Available data show that about
0.1% of the EU population has cirrhosis, which corresponds to between
14 and 26 new cases per 100,000 inhabitants and 170,000 deaths per
year [3].

One of the most serious outcomes of cirrhosis is hepatocellular
carcinoma, which is the fifth most common cause of cancer in the EU
and represents about 70–90% of primary liver cancer cases. According
to the World Health Organization (WHO), liver cancer is estimated to
be responsible for about 47,000 deaths per year in the EU [2].

The leading causes of cirrhosis and primary liver cancer in the EU
are harmful alcohol consumption, viral hepatitis B and C, and meta-
bolic syndromes related to overweight and obesity. The second major
cause of both cirrhosis and liver cancer is chronic viral hepatitis B [2].

Hepatitis is inflammation of the liver. It is a condition that can be
self-limiting and may progress to fibrosis, cirrhosis, or liver cancer.
Although hepatitis viruses are the most common cause of hepatitis in
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the world, hepatitis can also be caused by other infections, toxic
substances such as alcohol and drugs, and autoimmune diseases.

According to the WHO, viral hepatitis infection affects about 400
million people worldwide, which is more than 10 times the number of
people infected with HIV. Nevertheless, over 90% of those infected with
hepatitis C can be completely cured within 3–6 months. Worldwide,
about 1.4 million people annually die from hepatitis, while 6–10
million are newly infected.

The liver is the largest glandular organ in the body and is absolutely
crucial to life, as it performs a number of vital functions, including the
synthesis of proteins, fats, and fatty acids, metabolism and the storage
of carbohydrates, and bile production and excretion. The liver main-
tains blood volume and quality by filtering out potentially harmful
biochemical products such as bilirubin, which forms during the
breakdown of old blood cells, and ammonia, which forms during the
breakdown of proteins. Both bilirubin and ammonia are produced
constantly. The liver also filters out harmful substances from external
sources, including drugs, alcohol, and environmental toxins. The
failure of any of these detoxifying functions leads to poor health [3].

Liver disease can result from infection, injury, drug reactions,
toxins, autoimmune processes, or genetic defects that cause a buildup
of iron or copper. It can lead to inflammation, scarring, fibrosis, various
obstructions, clotting abnormalities, and even liver failure [3].

For example, alcoholic liver disease (ALD) is a type of liver disease
that is gaining increasing recognition around the world [4]. About
493,300 deaths worldwide were attributed to ALD in 2010, which
accounted for 0.9% of all deaths that year [5]. Except for alcohol
disorders and fetal alcohol syndrome, liver diseases have the highest
alcohol-attributable fractions of any disease, and alcohol consumption
contributes to about half of the disease burden of liver cirrhosis [5].

The diagnosis of liver disease can be formulated as a two-class
classification problem. Although numerous methods for diagnosing
liver disease have been successfully applied to the classification of
different tissues, most current diagnostic methods [6–27,32] are black
box models. A drawback of black box models is that they cannot
adequately reveal information that may be hidden in the data.

For example, even in cases for which high-performance classifiers
[6–8,10,28] allow the accurate assignment of instances to groups, black
box models cannot explain the reasons underlying that assignment to
physicians; therefore, algorithms that can provide insight into these
underlying reasons are needed. Rules are one of the most popular
symbolic representations of knowledge discovered from data, and are
more comprehensible than other representations [33].

Rule extraction can provide detailed explanations underlying
assignments, and is it therefore becoming increasingly popular; how-
ever, in the medical setting, extracted rules must be not only highly
accurate, but also simple and easy to understand.

Recently developed by Setiono et al. as a rule extraction tool [34],
the Recursive-Rule eXtraction (Re-RX) algorithm provides a hierarch-
ical, recursive consideration of discrete variables prior to analysis of
continuous data, and can generate classification rules from neural
networks (NNs) that have been trained on the basis of both discrete
and continuous attributes.

In contrast to black box models, the Re-RX algorithm [34] is a
“white box” model that provides highly accurate classification. It is easy
to both explain and interpret in accordance with the concise extracted
rules associated with IF-THEN forms. Due to its ease of understanding,
the Re-RX algorithm is typically preferred by both physicians and
clinicians.

However, due to its recursive nature, the Re-RX algorithm tends to
generate more rules than other rule extraction algorithms. Therefore,
one of the major drawbacks of the Re-RX algorithm is that it typically
generates expansive extraction rules for middle-sized or larger data-
sets.

It is important to consider both accuracy and interpretability for
extracted classification rules. The number of correctly classified test

samples typically determines the accuracy of each extracted classifica-
tion rule, while the number of extracted rules and the average number
of antecedents in the extracted rules determine their interpretability.

To achieve both highly accurate and concise extracted rules while
maintaining the desirable framework of the Re-RX algorithm, we
recently proposed supplementing the Re-RX algorithm with contin-
uous attributes (Continuous Re-RX) [35]. In Continuous Re-RX, C4.5
[36] is employed to form a decision tree in a recursive manner, while
multi-layer perceptrons (MLPs) are trained using backpropagation
(BP), which allows pruning [37] and consequently generates more
efficient MLPs for highly accurate rule extraction. As a result,
Continuous Re-RX provides rules that are not only highly accurate,
but also concise and interpretable; that is, Continuous Re-RX provides
IF-THEN rules. This white box model is easier to understand than
traditional black box models and is therefore preferable in the medical
setting.

In this study, we proposed the use of a new rule extraction
algorithm, Continuous Re-RX [35] combined with sampling selection
techniques [38,39] (Sampling-Continuous Re-RX) for preprocessing.
This combination is similar to Sampling Re-RX with J48graft [40];
however, based on the difficulty of extracting highly accurate rules, the
use of Sampling-Continuous Re-RX algorithm allowed us to achieve
high accuracy while only sacrificing slightly less conciseness because
although Continuous Re-RX provides higher accuracy, it also extracts a
larger number of rules [35].

The accuracy and interpretability of diagnostic rules extracted using
Sampling-Continuous Re-RX were investigated based on a comparison
with crisp rule extraction [41] and two previous fuzzy rule extraction
techniques [42,43]. The BUPA Liver Disorders dataset from the
repository of machine learning at the University of California Irvine
(UCI) [44], which comprises 768 cases with two classes (disorder or
non-disorder) and six continuous attributes, was used in this study, as
was the Hepatitis dataset for the same glandular organ from the UCI
machine learning repository [44], which comprises 155 cases with two
classes (LIVE or DIE) and 19 attributes.

The performance of rule extraction algorithms for the BUPA dataset
since 2006 and Hepatitis dataset since 1992 were reviewed and
compared with that of the previous rule extraction techniques with
Sampling-Continuous Re-RX.

In Sections 5.1.1 through 5.1.6, the concrete rule set for the BUPA
dataset extracted by the proposed algorithm is compared with three
kinds of previous rule extraction algorithms. In Sections 5.2.1 through
5.2.4, the concrete rule set for the Hepatitis dataset extracted by the
proposed algorithm is compared with previous rule extraction algo-
rithms.

In Section 6.1, the role of four kinds of biomarkers for the diagnosis
of liver disorders is explained, and in Section 6.2, the liver enzyme and
serum activity of alanine aminotransferase (ALT) is described [45]. The
serum activity of gamma-glutamyl transpeptidase (transferase) (GGT)
[46] is discussed in Section 6.3, GGT as an indicator of liver disease
[47] in Section 6.3, and the interpretation of rules extracted by the
proposed algorithm from the perspective of medical informatics in
Section 6.4. In Section 6.5, the trade-offs between accuracy and the
number of extracted rules is discussed using a trade-off curve for the
BUPA dataset. In Section 6.6, the Child-Pugh score is described
[48,49]. In Section 6.7, in consideration of the Child-Pugh score, an
interpretation of the rules extracted from Hepatitis dataset is provided.
In Section 6.8, the trade-off between accuracy and the number of
extracted rules is discussed using a trade-off curve for Hepatitis
dataset. Finally, in Section 7, a summary and conclusion are provided.

The first objective of this study was therefore to quantify the nature
and magnitude of the associations between GGT, ALT, aspartate
aminotransferase (AST) and ALP levels with the risk of developing
liver disease using the rule extraction approach.

The second objective was to quantify the nature and magnitude of
associations between the presence and severity of ascites and the levels
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of several serum biomarkers with the risk of developing hepatitis using
the rule extraction approach and the Child-Pugh score.

2. Related works

The BUPA Liver Disorders dataset was created by Richard S.
Forsyth at BUPA Medical Research and Development Ltd. during the
1980s as part of a larger health-screening database. In 1990, the
dataset was donated on his behalf to the UCI machine learning
repository [44]. Since then, it has been commonly used as a benchmark
for classification algorithms. The Hepatitis disease dataset was created
at the Jozef Stefan Institute in Slovenia. The dataset was also donated
on his behalf to the UCI machine learning repository.

Numerous methods for diagnosing the BUPA and Hepatitis data-
sets have been successfully applied to the classification of different
tissues. These methods include the following: clustering based attribute
weighting [6]; extreme learning machines [12]; support vector ma-
chines (SVMs) [9,13,14,30,31,43]; neural networks (NNs) [28,37];
fuzzy classification [42]; fuzzy decision tree [11]; fuzzy rule extraction
from SVMs [43]; CART [7,8]; support vector recognition [10]; binary
classification [19]; artificial immune systems [15,16,29,32]; swarm
optimization [18,22,26,50]; neuro-fuzzy models [21]; fuzzy classifiers
[20]; kernel nearest-neighbor [23]; feature extraction [24]; principal
component analysis [25,31]; axiomatic fuzzy sets [51]; information
granulation [52]; electromagnetism-like mechanisms [17]; support
feature machines [27] and rough sets [28].

A brief description of four rule extraction algorithms [37–39,53]
used for comparisons is provided in Section 5.

Hsieh et al. [41] proposed a particle swarm optimization (PSO)-
based Fuzzy Hyper-Rectangular Composite Neural Network
(PFHRCNN), which applies PSO to trim the rules generated by a
trained HRCNN without downgrading (and even possibly improving)
the recognition performance.

The classification methodology proposed by Gadaras and Mikhailov
[42] identifies fuzzy boundaries of classes by processing a set of labeled
data. Fuzzy rules are obtained by exploring the characteristics of the
identified boundaries and automatically producing membership func-
tions for each class. When new patterns require classification, their
numerical attributes are tested against generated knowledge to match a
patient's symptoms with an antecedent.

In order to improve the interpretability of generated rules, Chaves
et al. [43] proposed FREx_SVM, a new method for fuzzy rule extraction
from trained SVMs for multi-class problems that includes a wrapper
feature selection algorithm.

In 2003, Tan et al. [53] proposed pioneering research to extract
diagnostic rules from the Hepatitis dataset using a two-phase hybrid
evolutionary classifier. In the first phase, to confine the search space by
evolving a pool of good candidate rules a hybrid evolutionary algorithm
is used; for example, genetic programming is applied in order to evolve
nominal attributes for free structured rules, while a genetic algorithm is
used to optimize the numeric attributes for concise classification rules
without the need of discretization. In the second phase, these rules are
used to optimize the order and number of rules to create accurate and
comprehensible rule sets.

3. Methods

3.1. Recursive-Rule eXtraction (Re-RX) algorithm

Although the Re-RX algorithm can easily handle multi-group
problems, it was originally developed to consider only two-group
classification problems [34]. The outline of the Re-RX algorithm is as
follows:

Algorithm. Re-RX (S, D, C)

Input: A set of data samples S having discrete attributes D and
continuous attributes C.

Output: A set of classification rules.
1. Train and prune [37] an NN by using the dataset S and all of its D

and C attributes.
2. LeD’ and C’ be the sets of discrete and continuous attributes, re-

spectively, still present in the network, and let S’ be the set of
data samples correctly classified by the pruned network.

3. If D’=ϕ, then generate a hyperplane to split the samples in S’ ac-
cording to the values of the continuous attributes C’, and then
stop.Otherwise, use only the discrete attributes D’ to generate the

set of classification rules R for dataset S′.
4. For each rule, Ri is generated:

R δ R δIf support ( ) > and error ( ) > , theni 1 i 2 (1)

• Let Si be the set of data samples that satisfy the condition of rule Ri

and Di be the set of discrete attributes that do not appear in rule
condition Ri.

• If Di=ϕ, then generate a hyperplane to split the samples in Si ac-
cording to the values of their continuous attributes Ci, and then
stop.

S D COtherwise, call Re−RX ( , , ).i i i (2)

Any NN training and pruning method can be used in Step 1 of the
Re-RX algorithm, as it does not make any assumptions regarding the
NN architecture; however, we have restricted ourselves to the use of
backpropagation NNs with only one hidden layer because such net-
works have been shown to retain the universal approximation property
[54].

A crucial component of any NN rule extraction algorithm is an
effective NN pruning algorithm. Pruning the inputs that are not needed
to solve the problem allows the extracted rule set to be more concise,
and a pruned network also helps to filter noise that might be present in
the data, such as that from outlying or incorrectly labeled data samples.
Therefore, from Step 2 onward, the algorithm only processes training
data samples that have been correctly classified by the pruned network.
Previously, we developed an NN pruning algorithm that incorporates a
penalty function during training and adds a positive penalty value to
the sum-of-squared error function for each connection with nonzero
weight [33]. Consequently, many of the connections have weights very
close to zero when network training is complete, and those with very
small values can typically be pruned without adversely affecting the
accuracy of the network.

If all discrete attributes are pruned from the network, the algorithm
generates a hyperplane in Step 3

∑ wiCi w= 0
Ci C∈ ′ (3)

that separates both groups of samples. Statistical and machine learning
methods such as logit regression or SVMs can then be used to obtain
the constant and the rest of the coefficients of the hyperplane. We
employ an NN with one hidden unit in our implementation.

The support of a rule, which is the percentage of samples covered by
that rule, and each rule's corresponding error rate are checked in Step
4. If the support meets the minimum threshold δ1 and the error rate
exceeds the threshold δ2, then the subspace of the rule is further
subdivided either by calling Re-RX recursively when no discrete
attributes remain present in the conditions of the rule, or by generating
a separating hyperplane involving only the continuous attributes.
Because the Re-RX algorithm handles discrete and continuous attri-
butes separately, it generates a set of classification rules that are more
comprehensible than those with both types of attributes in their
conditions.
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To enable a better understanding of its underlying mechanisms, a
brief overview of the Re-RX algorithm and the concept behind its
design is shown in Fig. 1. C4.5 [36] was used to generate decision trees
in the Re-RX algorithm. The subdivision of the Re-RX algorithm is a
unique function that is inherent in its nature. Each successive subdivi-
sion allows the use of other previously unused attributes; this increases
the number of extracted rules as well as their accuracy.

It should be noted that the accuracy, comprehensibility, and
conciseness of extracted rules have important trade-offs. Before sub-
division, extracted rules are more comprehensible and concise, yet less
accurate. Conversely, after subdivision, extracted rules are less concise,
yet more accurate.

3.2. Re-RX algorithm with continuous attributes (Continuous Re-RX)

Although a primary aim of the Re-RX algorithm is the strict
separation of discrete and continuous attributes in the antecedent of
each extracted rule, this design often results in reduced accuracy.
Whereas the Re-RX algorithm prunes continuous attributes (C′) before
the C4.5 decision tree is generated (Fig. 2), Continuous Re-RX uses
both discrete (D′) and continuous attributes (C′) to generate the
decision tree [35], which results in increased complexity. This may

seem counterintuitive to the algorithm's design, but the use of both
types of attributes also results in increased accuracy. An outline of
Continuous Re-RX is as follows:

Continuous Re-RX (S’, D’, C’)
Input: A set of data samples (S’) having both discrete (D’) and

continuous (C’) attributes.
Output: A set of classification rules.

1. Train and prune [37] an NN using the dataset S and all of its D and
C attributes.

2. Let D’ and C’ be the sets of discrete and continuous attributes,
respectively, still present in the network, and let S’ be the set of
data samples correctly classified by the pruned network.

3. Generate decision tree by using both discrete (D’) and continuous
(C’) attributes [35].

4. For each rule, Ri is generated:

If support (R )>δ and error (R )>δ , theni 1 i 2 (4)

• Let Si be the set of data samples that satisfies the condition of rule
Ri, let Di be the set of discrete attributes, and let Ci be the set of
continuous attributes that does not appear in rule condition Ri.

Fig. 1. Schematic overview of the Recursive-Rule eXtraction (Re-RX) algorithm.

Fig. 2. Schematic overview of the Re-RX algorithm with continuous attributes.
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Call Continuous Re−RX (S , D , C ).i i i (5)

Otherwise, Stop.
As shown in Fig. 2, to avoid such difficulties in Continuous Re-RX,

we carefully set the value of subdivision rate and the values of δ1 and δ2
in Step 4.

3.3. Sampling selection technique

Setiono [38,39] proposed a supervised learning scheme that aimed
to increase model accuracy by selecting the most appropriate training
data samples. In that scheme, models for classification problems such
as NNs are trained using a historical dataset. In the case of classifica-
tion problems such as credit scoring, the credit risk of each sample is
labeled as either good or bad.

However, some of these class labels may be incorrectly assigned,
resulting in the presence of irregular data samples. Although these
samples may have similar attributes, as is commonly the case for most
samples in one class, they actually belong to a different class. This is
problematic because the presence of irregular and/or mislabeled data
samples in a training dataset is likely to adversely affect the perfor-
mance of the NN.

In the sampling selection technique proposed by Setiono et al.
[38,39], NNs are trained to identify potentially irregular and/or
mislabeled data samples. Data samples that are consistently misclassi-
fied by a majority of NNs are then removed before a model is
constructed to distinguish between good and bad credit risk.

The sampling selection technique in the present paper can be
summarized as follows: 1) Ensemble creation: train an ensemble of M
feedforward NNs using the available training data samples; 2) Sample
selection: select training data samples based on the predictions of the
NN ensemble; 3) Model generation: use the selected samples to train
an NN; and 4) Rule extraction: apply the Continuous Re-RX algorithm
[35] to obtain highly accurate and interpretable classification rules
capable of distinguishing between disorders and non-disorders.

The selection of samples in Step 2 is a core component of the
sampling selection technique. First, we employed an NN ensemble to
identify outliers in the training dataset. An effective method for
improving the predictive accuracy of numerous learning methods is
to remove outliers and noise prior to learning. If a data sample is
incorrectly classified by a proportion of NNs exceeding the threshold ρ
and thereby identified as an outlier, it is discarded; otherwise, it is
retained in the training dataset.

3.4. Re-RX algorithm with continuous attributes combined with a
sampling selection technique (Sampling-Continuous Re-RX)

Here we propose a new highly accurate and interpretable rule
extraction algorithm using Continuous Re-RX with combined with
sampling selection techniques (Sampling-Continuous Re-RX) for pre-
processing.

The objective of the present study was to achieve highly accurate
and interpretable classification rules for the BUPA and Hepatitis
datasets. However, these are medical datasets, so the focus was on
decreasing the number of extracted rules and the average number of
antecedents. To extract accurate rules, Sampling-Continuous Re-RX,
which is better suited for achieving highly accurate and interpretable
medical rules, was applied.

The BUPA and Hepatitis datasets were preprocessed using the
sample selection technique [38,39] to extract a fewer number of rules
and a lower average number of antecedents. We then employed
Continuous Re-RX to extract a set of highly accurate and interpretable
diagnostic rules for the BUPA and Hepatitis datasets. As shown in a
schematic overview of Sampling-Continuous Re-RX in Fig. 3, a
supplementary cross-validation (CV) loop is carried out with the

sampling selection by an NN ensemble.
The most important aim of Sampling-Continuous Re-RX is to

improve the accuracy and interpretability of extracted rules for
physicians, because the competition for achieving only better classifi-
cation accuracy for the BUPA and Hepatitis datasets has appeared to
plateau [6–8,28], and unless diagnostic accuracy can be considerably,
i.e., closed 100%, improved, limited contributions will be made to
medical informatics.

3.5. Experimental setup for the BUPA liver disorders dataset

The BUPA Liver Disorders dataset comprises 345 samples, each
taken from an unmarried male, consisting of six attributes and two
classes as follows: 200 of these samples are belong to one class
(disorder), and the remaining 145 belong to the other (non-disorder).
The first five attributes of the collected data samples are the results of
blood tests, while the last attribute is daily alcohol consumption [55].

1. MCV: mean corpuscular volume (fL)
2. ALP: alkaline phosphatase (IU/L)
3. ALT: alanine aminotransferase (IU/L)
4. AST: aspartate aminotransferase (IU/L)
5. GGT: gamma-glutamyl transpeptidase (or transferase) (IU/L)
6. DRNO: number of half-pint equivalents of alcoholic beverages drunk

per day.

Notes on the amount of some kinds of alcohols:
Half-pint of beer (284 mg)=12.5 g Alcohol
Wine (120 mg)=12.0 g Alcohol
Japanese sake (100 mg)=12.0 g Alcohol
Whisky (40 mg)=12.8 g Alcohol

3.6. Experimental setup for the Hepatitis dataset

The Hepatitis dataset, which consists of 155 instances, each
consisting of 19 attributes, namely age, sex, steroid, antivirals, fatigue,
malaise, anorexia, liver big, liver firm, spleen palpable, spiders, ascites,
varices, bilirubin, ALP, AST, albumin, protime and histology, is
summarized in Table 1. The problem with this database is that it
includes both nominal and numeric attributes. The Hepatitis dataset is
a complex and noisy dataset because it contains a large amount of
missing data. Class is distributed with 32 (20.65%) DIE samples and
123 (79.35%) LIVE samples. The classification task is to predict
whether a patient with hepatitis will live or die [53].

Fig. 3. Schematic overview of the sampling-continuous Re-RX algorithm.
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4. Results

4.1. Performance

To guarantee the validity of the results, we used k-fold CV [56] to
evaluate the classification rule accuracy of test datasets. The k-fold CV
method is widely applied by researchers to minimize the bias asso-
ciated with random sampling.

The BUPA dataset was trained using Sampling-Continuous Re-RX,
and 5 runs of 2-fold CV (repeated-randomized-hold-out-approach)
accuracies for the training dataset (TR ACC), 5 runs of 2-fold CV
accuracies for the test dataset (TS ACC), the number of extracted rules
(# rules), the average number of antecedents (Ave. # ante.), and the
area under the receiver operating characteristics curve (AUC) [57] were
obtained (Table 2). In this paper, the AUC was used as an appropriate
evaluator because it does not include class distribution or misclassifi-
cation costs [57].

Numerous types of rules have been suggested in the literature from
the perspective of the expressive power of extracted rules, including
propositional rules, which take the form of IF-THEN expressions and
clauses defined using propositional logic, and M-of-N rules. Breaking
from traditional logic, fuzzy rules allow partial truths instead of
Boolean TRUE/FALSE outcomes.

Even if all types of rules are considered, the consensus is that no
matter how they are defined, an ideal measure has yet to be developed;
therefore, “what is a concise and/or interpretable rule?” remains a
difficult question to answer.

To answer this question, we attempted to develop a “rough indicator”
of conciseness by comparing the average number of antecedents from
extracted rules generated using a variety of techniques [35].

We achieved an average accuracy of 73.48% after 5 runs of 2-fold
CV for the BUPA dataset, as shown in Table 2.

Although the accuracy and the number of rules extracted were
slightly varied, the reliability and robustness of the accuracies and the
number of rules extracted obtained by the proposed method were
confirmed by varying the number of hidden units in intermediate layer,
as shown in Table 3. The parameter settings are shown in Table 4.
According to our experience with numerical experiments, the number
of hidden units can be expected to mostly affect the accuracies and the
number of rules extracted.

Regarding the complexity of Sampling-Continuous Re-RX, it took
about 4.3 s to train the BUPA dataset using a standard workstation
computer (3.1 GHz Intel Xeon E5-2687W, 3.5 GHz Turbo, 25 MB
Cache; 64 GB RAM; 512 GB DDR3 System memory) and about 21.3 s
for 5 runs of 2-fold CV. The testing time was negligible.

Based on the comparisons shown in Table 2, Sampling-Continuous
Re-RX extracted more accurate, concise, and interpretable rules for the
BUPA dataset. That is, Sampling-Continuous Re-RX achieved substan-
tially better accuracy (72.44–73.48% vs. 64.33–67.33%) and consider-
ably fewer rules and antecedents compared with the original Re-RX
algorithm.

4.2. Results for the Hepatitis dataset

We achieved an average accuracy of 83.24% after 5 runs of 2-fold
CV for the Hepatitis dataset, as shown in Table 5. Regarding the
complexity of Sampling-Continuous Re-RX, it took about 2.43 s to

Table 1
Summary of the Hepatitis dataset.

Attribute Possible values

Age, years Integer 1–80
Sex Male, female
Steroid No, yes
Antivirals No, yes
Fatigue No, yes
Malaise No, yes
Anorexia No, yes
Liver big No, yes
Liver firm No, yes
Spleen palpable No, yes
Spiders No, yes
Ascites No, yes
Varices No, yes
Bilirubin 0.39, 0.80, 1.20, 2.00, 3.00, 4.00
ALP 33, 80, 120, 160, 200, 250
AST 13, 100, 200, 300, 400, 500
Albumin 2.1, 3.0, 3.8, 4.5, 5.0, 6.0
Protime 10, 20, 30, 40, 50, 60, 70, 80, 90
Histology No, yes
Class Die (20.65%), Live (79.35%)

Table 2
Average accuracies after CV for the BUPA dataset.

BUPA dataset TR ACC (%) TS ACC (%) # Rules Ave. # ante. AUC TR ACC (SD) TS ACC (SD)

Sampling-Continuous Re-RX [5×2CV] 75.19 73.48 8.50 2.24 0.69 1.66 1.74
Sampling-Continuous Re-RX [10×10CV] 75.12 72.44 11.00 2.54 0.69 1.56 1.63
Re-RX with C4.5 [5×2CV] 72.44 64.33 10.31 2.78 0.60 2.28 1.43
Re-RX with C4.5 [10×10CV] 70.67 67.33 12.33 3.32 0.62 3.78 3.84

CV: cross validation; Re-RX: Recursive-Rule eXtraction; Continuous Re-RX: Re-RX algorithm with Continuous Attributes; Sampling-Continuous Re-RX: Re-RX algorithm with
Continuous Attributes combined with Sampling Selection technique; TR: training dataset; TS: testing dataset; ACC: accuracy; Ave. # ante.: average number of antecedents; AUC: area
under the receiver operating characteristic curve; SD: standard deviation. 10×10CV: 10 runs of 10-fold cross validation; 5×2CV: 5 runs of 2-fold cross validation (Repeated-randomized-
hold-out approach).

Table 3
Effect of the accuracies and number of rules extracted obtained by the proposed method
by different parameter settings for the BUPA dataset.

Parameter TR
ACC
(%)

TS ACC
(%)

# Rules Ave. #
ante.

AUC TR
ACC
(SD)

TS ACC
(SD)

Parameter
setting 1

75.19 73.48 8.50 2.24 0.69 1.66 1.74

Parameter
setting 2

76.84 74.36 9.5 2.48 0.7 2.01 2.17

Parameter
setting 3

75.38 74.22 9 2.39 0.7 2.15 2.22

Table 4
Summary of parameter settings for NNs for the BUPA dataset.

Parameter Learning rate Momentum
factor

Number of
epochs

Number of
hidden units

Parameter
setting 1

0.1 0.1 1000 1

Parameter
setting 2

0.1 0.1 1000 2

Parameter
setting 3

0.1 0.1 1000 3
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train the Hepatitis dataset using a standard workstation computer
(3.1 GHz Intel Xeon E5-2687W, 3.5 GHz Turbo, 25 MB Cache; 64 GB
RAM; 512 GB DDR3 System memory) and about 12.13 s for 5 runs of
2-fold CV. The testing time was negligible.

5. Comparisons

5.1. Rule extraction comparison for the BUPA dataset

Next, we reviewed the rule extraction algorithms used for the BUPA
dataset since 2006 and tabulated their performances (Table 6). The
concrete rules extracted for the BUPA dataset by Sampling-Continuous

Table 5
Average accuracies for the Hepatitis dataset after CV.

Hepatitis dataset TR ACC (%) TS ACC (%) # Rules Ave. # ante. AUC TR ACC (SD) TS ACC (SD)

Sampling-Continuous Re-RX [5×2CV] 89.04 83.24 3.50 1.90 0.67 2.12 1.98
Sampling-Continuous Re-RX [10×10CV] 89.24 82.08 5.50 2.22 0.65 0.57 1.34
Re-RX with C4.5 [5×2CV] 88.42 78.73 5.50 2.63 0.63 2.55 3.01
Re-RX with C4.5 [10×10CV] 87.02 79.29 5.30 2.59 0.66 1.11 4.32

CV: cross validation; Re-RX: Recursive-Rule eXtraction; Continuous Re-RX: Re-RX algorithm with Continuous Attributes; Sampling-Continuous Re-RX: Re-RX algorithm with
Continuous Attributes combined with Sampling Selection technique; TR: training dataset; TS: testing dataset; ACC: accuracy; Ave. # ante.: average number of antecedents; AUC: area
under the receiver operating characteristic curve; SD: standard deviation. 10×10CV: 10 runs of 10-fold cross validation; 5×2CV: 5 runs of 2-fold cross validation (Repeated-randomized-
hold-out approach).

Table 6
Performance of previous rule extraction algorithms for the BUPA dataset.

Rule extraction method [validation method] [Ref.] TR ACC (%) TS ACC (%) # Rules Rule set Total ante. # Ave.# ante Year

Knowledge Acquisition via Information Granulation (KAIG) [N/A] [52] 78.2 70.0 5 (FR) No – – 2006
Interpretable-Fuzzy-Rule Based-Classification [Averaged over 10 runs] [42] – 89.9 8 (FR) Yes 64 FS 6.0 2009
Axiomatic Fuzzy Sets (AFS) Approach [5CV] [51] – 69.28 17.6 (FR) No – – 2013
Fuzzy Rule Extraction from Trained SVMs [Max. ACC] [43] – 61.19–76.13 2 (FR) Yes 8 4.0 2013
Hyper-Rectangular Composite NNs [Averaged over 10 runs] [41] 90 81 24 (FR) Yes 24 4.0 2014
Wind-Driven Swarm Optimization (WSO) [5*2CV] [50] – 57.27–73.95 6–32 No – – 2015
Sampling-Continuous Re-RX [5×2CV] Sampling-Continuous Re-RX

[10×10CV]
75.19 73.48 8.5 Yes 20 2.24 Present study
75.12 72.44 11.00 Yes 28 2.54 Present study

Re-RX: Recursive-Rule eXtraction; TR: training dataset; TS: testing dataset; ACC: accuracy; Ave. # ante.: average number of antecedents; Total # ante.: total number of antecedents;
10CV: 10-fold cross validation; 10×10CV: 10 runs of 10-fold cross validation; 5×2CV: 5 runs of 2-fold cross validation (Repeated-randomized-hold-out approach); FR: fuzzy rule.

Table 7
A review of previous classifier systems for the BUPA liver disorders dataset.

Author (Year) [Ref.] Method Classification accuracy (%)

Polat K (2012) [6] SCBAW (Subtracting Clustering based Attribute Weighting) [10CV] 99.41
Seera M and Lim CP (2014) [7] Fuzzy-Mini-Max (FMM)-CART-RF 30×2CV, 5CV, 10CV 95.01
Seera M et al. (2015) [8] Fuzzy-ARTMAP-CART [30×10CV] 94.41
Çomak E et al. (2007) [9] Fuzzy Weighting Pre-Processing+LS-SVM 94.29
Zangooei MH et al. (2014) [10] Support Vector Recognition Using NSGA-II [10CV] 91.24
Fan CY et al. (2011) [11] Case-Based-Fuzzy-Decision-Tree [100 runs Best ACC] 90.4
Mohapatra P et al. (2015) [12] Improved-Cuckoo-Search-Based-Extreme-Learning-Machine 88.36
Li DC et al. (2010) [13] Balance+Extension+SVM [10CV] 86.36
Peker M (2016) [14] K-Medoids Clustering-Based Attribute Weighting+SVM [10×10CV] 86.25
Özşen S and Güneş S (2009) [15] GA-AWAIS [10×10CV] 85.21
Polat K et al. (2007) [16] Fuzzy-AIRS [10CV] 83.38
Wang KJ (2015) [17] Improved Electromagnetism-Like Mechanism 77.61
Chang PC et al. (2012) [18] Particle Swarm Optimization [Averaged over 500 runs] 76.8
Kraipeerapun P and Fung CC (2009) [19] Ensemble NNs and Interval Neutrosophic Sets 74.64
Luukka P (2011) [20] Fuzzy Beans Classifier [30×10CV] 73.9
Goncalves LB et al. (2006) [21] Neuro-Fuzzy Model 73.26
Beheshti Z et al. (2014) [22] Particle Swarm Optimization [Averaged over 10 runs] 72.32
Yu K et al. (2002) [23] Kernel Nearest-Neighbor 71
Li DC et al. (2011) [24] PCA+SVM 70.85
Luukka P (2009) [25] Support Vector Machine [10×5CV] 70.25
Liu R et al. (2014) [26] Fuzzy Robust PCA+Similarity Classifier 65.81
Fan YJ et al. (2010) [27] Particle Swarm Optimization [Averaged over 20 runs] 63.28
Sampling-Continuous Re-RX
[5×2CV]
Present study 73.48
Sampling-Continuous Re-RX
[10×10CV]
Present study 72.44

BUPA: BUPA liver disorder; Re-RX: Recursive-Rule eXtraction; MLP: Multilayer Perceptron; 10CV: 10-fold cross validation; 10×10CV: 10 runs of 10-fold cross validation; 5×2CV: 5
runs of 2-fold cross validation; PCA: Principal Component Analysis; FNN: Fuzzy Neural Network.
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Re-RX are shown in Section 5.1. The three kinds of rule sets for the
BUPA dataset reported in previous studies are described in Sections
5.1.1 through 5.1.4. In Section 5.1.5, we compare Sampling-
Continuous Re-RX with previous rule extraction algorithms. In
Section 5.1.6, we review previous classifier systems for the BUPA
dataset (Table 7).

5.1.1. Rules extracted for the BUPA dataset using Sampling-
Continuous Re-RX

R1: GGT≤22 AND ALT≥21 AND AST≤27 THEN Non-disorder
R2: GGT≤22 AND ALT≥21 AND AST > 27 THEN Disorder
R3: GGT∈(22, 31] AND ALT≤21 AND AST≤11 THEN Non-disorder
R4: GGT∈(22, 31] AND ALT≤21 AND AST > 11 THEN Disorder
R5: GGT∈(22, 31] AND ALT > 34 THEN Disorder
R6: GGT∈(22, 31] AND ALT∈(21, 34] THEN Non-disorder
R7: GGT > 31 AND DRNO≤9 THEN Disorder
R8: GGT > 31 AND AST≤28 AND DRNO∈(9, 10] THEN Non-
disorder
R9: GGT > 31 AND AST > 28 AND DRNO∈(9, 10] THEN Disorder

5.1.2. Rules extracted for the BUPA dataset using a PSO-based fuzzy
hyper-rectangular composite NN [41]

Non-dis-
order

Disorder

Rule 1 Rule 2 Rule 1 Rule 2
MCV [82.088,

89.28]
[85.277,
89.697]

[85.277,
89.697]

[82.391,
92.501]

ALP [80.46,
103.83]

[54.33,
132.994]

[54.33,
132.994]

[29.774,
65.203]

ALT [4.840,
162.670]

[24.957,
87.737]

[24.957,
87.737]

[2.771,
162.015]

AST [4.559,
30.915]

[5.191,
43.214]

[5.191,
43.214]

[2.251,
21.598]

GGT [15.063,
30.574]

[26.863,
41.596]

[26.863,
41.596]

[22.290,
184.61]

DRNO [1.697,
2.874]

[0.428,
1.589]

[0.428,
1.589]

[1.766,
13.116]

Confidence 0.999 0.809 0.809 0.810
Scale 0.360 0.008 0.008 0.858

5.1.3. Rules extracted for the BUPA dataset using evolving fuzzy rule-
based classification [42]

Rule no. MCV ALP ALT AST GGT DRNO Class
R1 High Low Low Low Low High Non-

disorder
R2 Low High High High High Low Disorder

R3.1 Med— Med— Low— Low— Low— Low— Non-
disorder

high high med med med med
R3.2 Low— Low— Med— Med— Med— Med— Disorder

med med high high high high

R3.3.1 Med— Med— Med— Med— Med— Med— Non-
disorder

med med med med med med
High high high high high high

R3.3.2 Low— Low— Low— Low— Low— Low— Disorder
med med med low low med

med med med med med med

R3.3.3.1 Med— Med— Med— Med— Med— Med— Non-
Disorder

Med— med— med— med— med— Med—
Med med med med med med
high high low low high low

R3.3.3.2 Med— Med— Med— Med— Med— Med— Disorder
med— med— med— med— med— med—
med— med— med— med— med— med—
low low high high low high

5.1.4. Rules extracted for the BUPA dataset using fuzzy rule
extraction from trained SVMs [43]

R1: IF ALT is low and AST is low and GGT is low and
DRNO is medium, THEN Class 1—Accuracy: 0.6119 for 5 fuzzy
sets.

R2: IF ALT is medium and AST is low and GGT is low and
DRNO is low, THEN Class 2—Accuracy: 0.7613 for 3 fuzzy sets.

5.1.5. Comparison of rules extracted in the present study with those
from three previous algorithms

In Section 5.1.2, among 24 rules extracted, four rules were
extracted by the PSO-based fuzzy hyper-rectangular composite network
[41]. However, the actual number of extracted rules and antecedents
were much higher compared with Sampling Continuous Re-RX.

Furthermore, extracted closed intervals for non-disorder and dis-
order were considerably overlapped, which made classification more
difficult. For example, the first rule, i.e., the closed interval of non-
disorder for ALP and GGT, was [80.46, 103.83] and [15.063, 30.574],
respectively; the second rule of non-disorder for ALP and GGT was
[54.33, 132.994] and [26.863, 41.596], respectively.

On the other hand, the first rule, i.e., the closed interval of disorder
for ALP and GGT, was [54.33, 132.994] and [26.863, 41.596],
respectively; the second rule of non-disorder for ALP and GGT was
[29.774, 65.203] and [22.290, 184.61], respectively.

In Section 5.1.3, regarding accuracy, six rules extracted by fuzzy
classifiers [42] achieved an accuracy of 89.9% based on an average of
10 runs. Therefore, the accuracy is expected to decrease considerably
based on the 10 CV accuracy measure.

In addition, not all membership functions for MCV, ALP, ALT, AST,
GGT, and DRNO in the antecedent were accurately depicted. Moreover,
the rules extracted in Section 5.1.3 appeared to be too complicated. The
default number of attributes in antecedents of rules extracted by fuzzy
classifiers is six, which is identical to the number of attributes in the
BUPA dataset; therefore, the rules extracted in Section 5.1.3 may be
intuitively interpretable, but also overly subjective.

At a glance, two fuzzy rules extracted in Section 5.1.4 look quite
simple. However, the procedure to derive these two rules is not
straightforward. FREx_SVM combined with the feature selection
method [43] reduces the number of rules. The best rules obtained
are two fuzzy rules with six features. Although replacing all attributes
with their real names and assuming that the set of labels {very low,
low,medium, high, very high} are associated with each of the five fuzzy
sets. However, membership functions for ALT, AST, GGT, and DRNO
in the antecedent were not accurately depicted.

In the present form, the average number of antecedents was
considerably larger (4.0), and the accuracies were less than that of
the proposed algorithm. Therefore, these extracted rules are less
interpretable than the rules obtained using the proposed algorithm.
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Consequently, we believe that the present rules extracted using the
Sampling-Continuous Re-RX algorithm achieved excellent perfor-
mance (73.48% with an average of 2.24 antecedents).

5.1.6. Comparison of the classification accuracy in the present study
with another classifier system for the BUPA dataset

In this section, the classification accuracy obtained using Sampling
Continuous Re-RX is compared with that obtained using previous
classifier systems [6–27], as tabulated in Table 7. We reviewed the
classifier systems reported since 2002 and tabulated their perfor-
mances. Table 7 shows a comparison of studies that carried out k-fold
CV to measure classification accuracy. Generally, rule extraction
algorithms attempt to achieve both highly accurate and highly concise
extracted rules with a well-balanced trade-off. Strictly in terms of
classification accuracy, Sampling Continuous Re-RX may not be super-
ior to recent high performance classifiers.

5.2. Rule extraction comparison for the Hepatitis dataset

5.2.1. Performance of previous rule extraction algorithms for the
Hepatitis dataset

See Table 8.

5.2.2. Rules extracted for the Hepatitis dataset using Sampling-
Continuous Re-RX

R1: Ascites=No THEN LIVE
R2: Ascites=Yes AND Albumin≤3.5 THEN DIE
R3: Ascites=Yes AND Albumin > 3.5 THEN LIVE

5.2.3. Rules extracted for the Hepatitis dataset using EvoC [53]

R1: IF Fatigue=Yes AND Age≥30.0 AND ALP≤280.0
AND Albumin 4.3 AND Protime≤46.0

THEN Class=DIE

R2: IF Anorexia=No AND Bilirubin≤1.8 AND AST≤420.0
THEN Class=LIVE

R3: IF Spiders=Yes AND Age≥30.0 AND 62.0≤ALP≤175.0
AND Albumin≤4.3 AND Protime≤85.0
THEN Class=DIE

R4: ELSE Class=LIVE

Note: AST: SGOT (aspartate transaminase)
ALK phosphatase: ALP (alkaline phosphatase)

5.2.4. Comparison of extracted rules obtained by Sampling-
Continuous Re-RX and EvoC

As shown in Table 8, the concrete rule set for diagnosis of the
Hepatitis dataset is the only one obtained using a two-phase hybrid
evolutionary classifier [53]. Therefore, we compared the rule set
obtained using Sampling-Continuous Re-RX, shown in Section 5.2.2,
with that obtained using EvoC, shown in 5.2.3 [53].

The number of rules and average number of antecedents of the rule
set obtained using Sampling-Continuous Re-RX was 5.0 and 1.67,
respectively. Furthermore, only two attributes were used in the rule set:
ascites and albumin.

On the other hand, the number of rules and average number of
antecedents of the rule set obtained using EvoC was 4.0 and 3.25,
respectively. Nine attributes were used in the rule set is nine.
Regarding the accuracy of the test dataset, as shown in Table 8,
Sampling-Continuous Re-RX achieved 83.24% using 5 runs of 2-fold
CV (repeated-randomized-hold-out approach), while EvoC achieved
83.92% using a average of more than 100 runs. Therefore, in terms of
statistical validity, our proposed method achieved considerably better
accuracy.

Moreover, the ELSE condition used in R4 obtained by EvoC is itself
a black box. One of the major objectives of rule extraction is to provide
a clear understanding and explanation of a predictive model. The ELSE
part blindly assigns a class label to the samples. This black box part is
thereby unable to describe the entire corresponding data space.

In summary, Sampling-Continuous Re-RX achieved considerably
better accuracy with a much more concise rule set in terms of the
number of rules, the average number of antecedents, and the number
of attributes used in the extracted rule set than that of EvoC for the
Hepatitis dataset.

6. Discussion

In Section 6.1, we explain the role of four kinds of biomarkers in the
diagnosis of liver disorders, and in Section 6.2, we describe liver
enzymes and the risk of liver disease. Next, in Section 6.3, we discuss
the medical informatics interpretation of the rules extracted in the
present study, and in Section 6.4, we address an important trade-off
issue between the accuracy and the number of extracted rules.

6.1. Role of four different kinds of biomarkers in the diagnosis of liver
disease

Assays for GGT, ALT, AST and ALP are the most common
laboratory tests used for the detection of liver disease. Circulating
GGT can be found in serum and on the external surfaces of most cells,
especially hepatocytes; it is used as a biological marker for excessive
alcohol intake. ALT and AST, which are abundantly present within
hepatocytes, catalyze the transfer of amino groups to generate products

Table 8
Performance of previous rule extraction algorithms for the Hepatitis dataset.

Rule extraction method [validation method] [Ref.] TR ACC (%) TS ACC (%) # Rules Rule set Total ante. # . Ave. # ante. Year

Two-phase Hybrid Evolutionary Classifier [Averaged over 100 runs] [53] 85.04 83.92 2.93 Yes – – 2003
C4.5 [Averaged over 100 runs] [36] – 78.94 5.85 No – – 1992
PART [Averaged over 100 runs] [58] – 80.02 6.64 No – – 1998
Wind-Driven Swarm Optimization (WSO) [5*2CV] [50] 63.58–76.92 14–52 No – – 2015
Decision Table [10CV] [59] – 81.93 28 No – – 2011
Repeated Incremental Pruning to Produce Error Reduction (RIPPER)

[10CV] [60]
– 78.06 4 No – – 2011

Partial C4.5 Decision Tree [10CV] [61] – 84.51 8 No – – 2011
Ripple Down Rule Learner [10CV] [62] – 78.71 2 No – – 2011
Sampling-Continuous Re-RX [5×2CV] 89.04 83.24 3.50 Yes 7 1.90 Present study
Sampling-Continuous Re-RX [10×10CV] 89.24 82.08 5.50 Yes 13 2.22 Present study

Re-RX: Recursive-Rule eXtraction; TR: training dataset; TS: testing dataset; ACC: accuracy; Ave. # ante.: average number of antecedents; Total # ante.: total number of antecedents;
10CV: 10-fold cross validation; 10×10CV: 10 runs of 10-fold cross validation; 5×2CV: 5 runs of 2-fold cross validation (Repeated-randomized-hold-out approach).
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in gluconeogenesis and amino acid metabolism. ALP is a hydrolase
enzyme that catalyzes the hydrolysis of inorganic pyrophosphate, a
vascular calcification inhibitor. Serum ALP is commonly used as a
marker of liver or bone disease in clinical practice [63].

6.2. Serum ALT activity

Physicians, predominantly hepatologists and gastroenterologists,
treating patients with liver disease have long known that the measure-
ment of liver enzyme activities (serum aminotransferases, including
ALT and AST) is critical in the diagnosis and assessment of liver
disease [45].

6.2.1. Serum ALT blood test
ALT measurement is a low-cost, readily available blood test utilized

throughout the US to detect liver disease. It is a valuable screening test
to detect largely undiagnosed liver diseases such as asymptomatic viral
hepatitis and nonalcoholic fatty liver disease (NAFLD).

ALT levels differ according to sex, with men having higher values
than women. Additional factors that affect serum ALT levels include
body mass index and triglyceride levels, regardless of sex. In men, total
cholesterol levels and alcohol consumption have a positive correlation
with ALT levels, whereas smoking, physical activity, and age have a
negative correlation [45].

6.2.2. ALT as an indicator of liver disease
Since serum ALT levels increase in disease states that cause

hepatocellular injury, they are effective for identifying ongoing liver
disease. If elevated ALT levels are associated with symptoms such as
fatigue, anorexia, or pruritus, the probability of clinically significant
liver disease increases. The effectiveness of additional evaluation in
patients with asymptomatic elevation of ALT depends on the results of
physical examinations and the length of time and degree to which ALT
levels have been elevated [45].

6.3. Serum GGT activity

GGT is a sensitive marker of hepatobiliary disorders, although non-
specific to its cause, found in hepatocytes and biliary epithelial cells
[46]. In the clinical setting, blood GGT is used to indicate liver injury.

6.3.1. GGT as an indicator of liver disease
GGT is regarded as less specific than ALT for liver injury, and is

used less frequently for the detection and monitoring of liver disease.
However, as a prognostic indicator, it may be as discriminating as ALT
for liver disease, and more discriminating for other diseases. The
increased all-cause mortality found in this study associated with
elevated GGT is supported by a number of previous studies in terms
of disease association and mortality.

We confirmed the association between GGT and liver injury by
showing a mortality risk at least as great as that for elevated ALT, even
after adjusting for several known liver disease risk factors. GGT has
been strongly associated with both alcoholic and NAFLD. However,
surprisingly, less evidence has been reported for elevated GGT and liver
disease outcomes, including mortality [47].

6.4. Medical informatics interpretation of the rules extracted from the
BUPA dataset

We explained the reason why the present extracted rules achieved
very good results in Section 5.1.1. In this section, we attempt to
interpret how nine rules play a role in the diagnosis of non-liver or liver
disorder.

We consider abnormal liver enzyme values as a serum concentra-
tion of ALT and AST greater than 30 U/L or GGT greater than 51 U/L,
based on prior publications with liver enzyme and fatal outcomes.

Additionally, combinations of liver abnormalities, including in any one
enzyme elevation (ALT > 30 U/L, AST > 37 U/L, or GGT > 51 U/L) or
in all three enzymes (ALT > 30 U/L, AST > 37 U/L, and GGT > 51 U/
L), or an AST/ALT ratio greater than 1.0, were assessed [64].

Interpretations of extracted rules are as follows:
R1 and R2 state that a GGT of 22 and an ALT of 21 are critical cutoff
points. In the same range values of GGT and ALT, if AST > 27, then
disorder is diagnosed, as shown in R2.
R3 and R4 state that a GGT∈(22, 31] and an ALT of 21 are critical
cutoff points. In the same range values of GGT and ALT, if AST > 11,
then disorder is diagnosed, as shown in R4.
R5 and R6 state that a GGT∈(22, 31] and an ALT of 34 are critical
cutoff points. In the same range values of GGT and ALT, if ALT > 34,
then disorder is diagnosed, as shown in R6.
R7 states the upper limit of GGT for non-disorder. If GGT > 31, then
it is definitely disorder, regardless of the DRNO≤9.
R8 and R9 state that a GGT of 31 and a DRNO∈(9, 10] are critical
points. In the same range values, if AST > 28, then disorder is
diagnosed, as shown in R9.

We think that these rules can be applied to the diagnosis of the
BUPA dataset. We hope that the proposed algorithm could also be
adapted to similar liver disorder datasets to extract diagnostic rules.

6.5. Trade-off between the accuracy and number of extracted rules
for BUPA dataset

In the case of medical rule extraction, a trade-off is apparent
between high diagnostic accuracy and interpretability. Thus, if a
physician wishes to extract rules with high diagnostic accuracy from
medical datasets, they can choose the algorithm with high diagnostic
accuracy, but reduced interpretability. However, in other situations, a
physician may want to obtain extracted diagnostic rules with more
interpretability but reduced accuracy [40].

Needless to say, if the best trade-off can be found, then the best
extracted rules can be obtained. Ideally, we hope to extend the trade-off
curve to obtain a wider viable region that provides improvements in
both diagnostic accuracy and interpretability [40].

Recently, Fortuny, and Martens [65] expressed the same opinion:
Rule extraction is a technique that attempts to find compromise
between both requirements by building a simple rule set that mimics
how the well-performing complex model (black box) makes decisions.

As shown in Table 6, five fuzzy rule extraction algorithms were
proposed for the BUPA dataset. In contrast, only one concise rule
extraction algorithm was proposed for the same dataset.

To allow a better understanding of our claim, the best trade-off
curve between the accuracy and number of rules extracted is shown in
Fig. 4. The reciprocal of the number of rules extracted is shown on the
x-axis. The red dot, which is located at the trade-off curve, shows the
performance of the proposed algorithm. This demonstrates that the
present algorithm provided extracted rules for the BUPA dataset that
were both accurate and concise.

The three green dots obtained by hyper-rectangular composite NNs
[41], interpretable-fuzzy-rule-based classification [42], and fuzzy rule
extraction from trained SVMs [43] may provide better accuracy and/or
fewer rules compared with the algorithm used in the present student.

However, in general, fuzzy rules involve strong expressive power by
linguistic and intuitive expressions. Thus, the number of fuzzy rules is
not equivalent to the same number of concise rules in terms of
expressive power. On the contrary, the number of fuzzy rules should
be considered much more important than the number of concise rules.

Considering the potential for the more expressive power of fuzzy
rules, all of the green dots for fuzzy rules should be shifted horizontally
to the left, which result in being beyond the trade-off curve [40].

Consequently, the red dot obtained by the proposed algorithm is the

Y. Hayashi, K. Fukunaga Informatics in Medicine Unlocked 5 (2016) 26–38

35



closest to the trade-off curve, and shows a well-balanced performance
between accuracy and number of rules.

6.6. Child-Pugh score

In gastroenterology, the Child-Pugh score (sometimes referred to as
the Child-Turcotte-Pugh score) [48,49] is used to assess the prognosis
of chronic liver disease, primarily cirrhosis. Although the Child-Pugh
score was originally used to predict mortality during surgical proce-
dures, it is presently used to determine prognosis, as well as the
required strength of treatment and the necessity of liver transplanta-
tion. The Child-Pugh score employs five clinical measures of liver
disease, each of which is scored 1–3, with 3 indicating the most severe
derangement [66], as shown in Table 9. A numerical score is assigned
for patients in each parameter (albumin, bilirubin, prothrombin time,
ascites, encephalopathy), after which, patients are categorized into
Child A (5–7 points), B (8–11 points), or C (12–15 points), with class C
patients presenting with the most abnormalities.

6.7. Medical informatics interpretation of the rules extracted from
hepatitis dataset

Apparently, the rule set for diagnosis of the Hepatitis dataset is
quite concise, as it only consists of three rules and two attributes, i.e.,
ascites and albumin.

On the other hand, although the Child–Pugh score is widely used to
evaluate hepatic reserve function and related problems, such as non-
objective factors (ascites and hepatic encephalopathy). Child–Pugh A
(a patient with a Child–Pugh score of 5 points) includes chronic
hepatitis with normal hepatic function and early liver cirrhosis
accompanied by slightly abnormal hepatic function [67]. A simple
and objective method for evaluation of hepatic reserve function using
only albumin and total bilirubin measurements was recently proposed
as albumin–bilirubin (ALBI) grade [68].

Considering reports in the literature [64,67,68], rule R1 extracted
by the proposed algorithm is concise and reasonable. Rules R2 and R3
sharply derived an important cut-off point for serum albumin (3.5) for
Child-Pugh A. Since the presence and severity of ascites is quite serious
overall, rule R3 seems a little bit optimistic; however, we believe that
meaningful rules were extracted from the Hepatitis dataset, which has
been widely used for medical benchmarks.

6.8. Trade-off between the accuracy and number of extracted rules
for the Hepatitis dataset

As shown in Table 8, eight rule extraction algorithms were proposed
for the Hepatitis dataset. To allow a better understanding of our claim,
the best trade-off curve between the accuracy and number of rules

extracted is shown in Fig. 5. The reciprocal of the number of rules
extracted is shown on the x-axis. The red dot, which is located at the
trade-off curve, shows the performance of the proposed algorithm. This
demonstrates that the present algorithm provided extracted rules that
were both accurate and concise for the Hepatitis dataset.

As described in Section 5.2.4, the proposed algorithm provided
considerably better performance than that of EvoC [53]. Since the rule
extraction algorithm by partial C4.5 decision tree [61] did not
demonstrate a rule set in the literature, we cannot compare those
performances directly. The rule extraction algorithm results were close
to the trade-off curve and showed slightly higher accuracy (84.51%)
than that of the proposed algorithm (83.24%). However, interpret-
ability was considerably lower (the number of rules was 8.0) than that
of proposed algorithm (the number of rules was 3.5).

Consequently, the red dot obtained by the proposed algorithm is the
closest to the trade-off curve and shows well-balanced performance
between accuracy and the number of rules.

7. Conclusions

In this paper, we proposed Sampling-Continuous Re-RX as a new
algorithm for extracting highly accurate and interpretable rules for the
BUPA and Hepatitis datasets. We showed a rule set extracted from the
BUPA dataset and provided a medical informatics interpretation of the
extracted rules.

We also demonstrated that the extracted rules using the proposed
method were close to the trade-off curve, meaning that they were more
accurate and interpretable, and therefore more suitable for medical
decision making. Actually, high accuracy and interpretability were
achieved simultaneously using the proposed Sampling-Continuous Re-
RX algorithm for the BUPA and Hepatitis datasets.

We have previously developed the Re-RX family [69], which can
deal with various rule extraction situations in the medical setting; that
is, accuracy-priority types [35] and interpretability-priority types [70].

In the clinical setting, the measurement of liver enzymes, particu-
larly GGT and ALP, may serve as a prognostic tool for the long-term

Table 9
Classification measure of the Child-Pugh score.

Measure 1 Point 2 Points 3 Points

Total bilirubin (mg/dL) < 2 2–3 > 3
Serum albumin (g/dL) > 3.5 2.8–3.5 < 2.8
Prothrombin time,

prolongation (%)
> 60 40–60 < 40

Ascites None Mild (or suppressed
with medication)

Moderate to severe
(or refractory)

Hepatic encephalopathy None Grade I–II Grade III–IV

Fig. 4. Trade-off curve between the accuracy and number of rules extracted for the
BUPA dataset. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)

Fig. 5. Trade-off curve between the accuracy and number of rules extracted for the
Hepatitis dataset. (For interpretation of the references to color in this figure, the reader is
referred to the web version of this article.)
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prediction of mortality from liver disease [63]. Therefore, the rules
extracted for the BUPA dataset in the present study suggest the
presence of an association between GGT and ALP levels and liver
disease.

Additional research is needed to clarify this association. However,
in the absence of such data, slightly elevated levels of these enzymes,
even within normal ranges, may indicate a risk of liver disease and
suggest the need for further clinical evaluation.

Only three rules were extracted to diagnose the Hepatitis dataset.
These rules sharply derived the cut-off point (3.5) of albumin for the
Child-Pugh score. As previously reported [68], the albumin level is very
important and useful; therefore, in the future, we hope to successfully
extract interpretable rules from hepatic function datasets for the
diagnosis of hepatitis based on the presence and severity of ascites
and the levels of several biomarkers, such as albumin and bilirubin,
which may be indicative of various types of hepatitis.

Regardless, the complex problem of diagnosing liver disease with
practical diabetes datasets needs to be recognized. Based on the
findings in the present study, we hope to extract even more meaningful
diagnostic rules for more recent liver disease datasets in the future.
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